If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+38x=0
a = 19; b = 38; c = 0;
Δ = b2-4ac
Δ = 382-4·19·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-38}{2*19}=\frac{-76}{38} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+38}{2*19}=\frac{0}{38} =0 $
| (Z+2)^2=-2z | | 5(1-2(z-1)=-3(3z-1)+1 | | 7x+15=46 | | p/3-9=12 | | 3z-2+4(1-2)=5(1-2z)-12 | | (9)=3x-6 | | 3/4x=10000 | | 4^6x=64^8 | | 18y+2=4 | | 7(-1/4x)=15 | | X2-10x+6=0 | | (y-4)^2=-92 | | 50.1*10^-12x^2-19.3*10^-6x-1=0 | | 4(5x-2)+8=42 | | 16x=4+9x | | 65/(3x+14)=13/2x | | 2x5=15 | | 2x5=153x | | x2+12x=5 | | 6a^2=a+77 | | 0+1=x | | 21/x=9/42 | | 9/5=x/42 | | 3/11=13/x | | 12/x=96/500 | | 3x^2+19x+18=0 | | y2+7=(y-1)2+3y | | y=20,000(1.03^25) | | x/9+8=-2 | | 4^x×4^-1=3.2^x-8 | | y=20,000(1.03(25)) | | 2x-4/x3=2/x-3+3 |